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Abstract 

It is shown that the modulated phases of tetramethyl- 
ammonium tetrachlorozincate, [(CH3)4N]2ZnC14, 
can be described by one superspace group: 
Pcmn(OO3")(lsi). This group is consistent not only 
with the properties of the diffraction pattern of the 
commensurate and incommensurate phases (and in 
particular with the corresponding space-group assign- 
ments found in the literature) but also with the crystal 
morphology, the latter being studied here by growth 
sphere experiments. The description of the mor- 
phology in terms of main and satellite faces, 
analogous to the description of the diffraction pattern, 
reveals a simple order in the crystal morphology of 
the different phases. Whereas the main faces remain 
relatively unperturbed, the position and appearance 
of satellite faces are directly related to the modulation 
wave. In fact, the evolution of the modulation wave 
vector can be monitored from the position of the 
satellite faces with respect to the main faces. Morpho- 
logical extinction conditions even show compatibility 
with the proposed superspace group. Though the 
bonding structure of the satellite faces is not quite 
understood yet, a preliminary explanation is given in 
terms of a stabilized step structure. 

I. Introduction 

In the past, identification of crystal faces {hkl} on the 
basis of geometrical morphological laws served as an 
important tool in the determination of relative unit- 
cell parameters and the derivation of both point- 
group and possibly space-group symmetry. 

After the introduction by de Wolff (1977) of the 
superspace description for one-dimensionally modu- 
lated structures, attempts have been made to charac- 
terize the morphology of these modulated crystals by 
extending the standard geometrical laws to include 
superspace-group symmetry. Indeed, from the mor- 
phology of Rb2ZnBr4 and Rb2ZnCI4, which at room 
temperature are displacively modulated fl-K2SO a- 
type structures, extra so-called satellite faces related 
to the modulation wave vector could be determined 
(Janner, Rasing, Bennema & van der Linden, 1980; 

0108-7681/86/010069-09501.50 

Rasing, 1982). In subsequent growth sphere experi- 
ments only for Rb2ZnBr4 were a few of the reported 
satellite faces found. However, it appeared to be 
possible to determine from the orientation of these 
satellite faces the relative length of the modulation 
wave with respect to the average unit-cell parameters 
(Dam & Janner, 1983). 

Although this shows that the extended geometrical 
laws can be successfully applied to incommensurately 
modulated structures, the thermodynamic and struc- 
tural reasons for their success is not clear. In this 
respect the microscopic nature of the satellite faces 
is still an open question; they can possibly be con- 
sidered as F faces, i.e. as faces with a non-zero edge 
free energy (van der Eerden, 1979). 

To study this problem in more detail the mor- 
phology of [(CH3)4N]2ZnC14 (here denoted TMA- 
ZC) was investigated. Special attention was paid to 
the relation between the morphological importance 
(MI) of the satellite faces and the symmetry and 
periodicity of the modulation wave. 

The basic structure of [(CH3)4N]2ZnC14 is of the 
same type as that of Rb2ZnBr4 (Hogervorst, 1983) 
and has space-group symmetry Pcmn. The modulation 
vector q=  3'c* has the same orientation as in 
Rb2ZnBr4 (along the c* axis) but in TMA-ZC it can 
attain several values and five modulated phases have 
been found, as shown in Table 1 (Tanisaki & Mashi- 
yama, 1980; Almairac, Ribet, Ribet & Bziouet, 1980). 

TMA-ZC transforms below T = 293K from the para 
phase I (Pcmn) into phase II, which is incommensur- 
ate. Incommensurability arises because 3' is tem- 
perature dependent within the same phase II, and 
therefore it cannot be expressed in terms of a given 
rational number, even if one does so at fixed tem- 
perature values (e.g. at about 290K one has 3' - 0.42). 

The other four low-temperature phases are com- 
mensurate. Phase III shows a small ferroelectric effect 
(Sawada, Shiroishi, Yamamoto, Takashige & Matsuo, 
1978) and is modulated with 3' = 2/5, while in phases 
IV and VI 3' = 1/3. The data known so far for phase 
V support the idea of 3' = 2. Such a modulation, while 
keeping the same orthorhombic lattice, lowers the 
original space-group symmetry by changing the 
atomic positions within the same unit cell without, 
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Table 1. Description of the structural changes occurring 
in [(CH3)4N]2ZnCI 4 below 300 K 

T h e  w a v e  v e c t o r  q is t a k e n  a l o n g  the  p s e u d o - h e x a g o n a l  c axis ,  the  

p o l a r i z a t i o n  b e i n g  a l o n g  the  shor t e s t  axis  b. 

T h e  v a r i o u s  p h a s e s  o f  [ ( C H 3 ) a N ] 2 Z n C I  4 

VI V IV III II I 
q =  1/3c* q =2c* q = 1/3c* q = 2/5c* q = 0.42c* para 
T < 1 6 1 K  T > 1 6 1 K  T > 1 8 1 K  T > 2 7 6 - 5 K  T > 2 7 9 K  T > 2 9 3 K  
P212t2 t P2t/cll  Pl l2t /n Pc2tn ? Pcmn 

- -  a = 90.02 ° y = 90.3 ° - -  - -  - -  

however, giving rise to additional satellite reflections. 
Note that only the room-temperature (average?) 
structure has been solved (Wiesner, Srivastava, Ken- 
nard, DiVaira & Lingafelter, 1967). 

All these cases can be described in terms of a single 
periodic distortion wave (the modulation) of a basic 
crystal structure. The Fourier wave vectors k of its 
electron density distribution (which label the Bragg 
spots of the corresponding diffraction pattern and the 
crystal growth faces as well) are integral linear combi- 
nations of a*, b*, c* and q = 3'c*. The first three vectors 
span the orthorhombic reciprocal lattice A* of the 
undistorted basic structure (essentially that of phase 
I with space group Pcmn). 

While the morphological consequences of the 
incommensurability for phase II, the undistorted 
phase I and the other two modulated phases III and 
IV are considered experimentally, the theoretical 
investigation given below also includes the two low- 
temperature phases V and VI. 

The main result is that it is convenient to adopt the 
same description (structurally and morphologically) 
for all the different phases I to VI of TMA-ZC. This 
is possible on the basis of a (3 + 1)-dimensional super- 
space-group characterization. Indeed, phases II to VI 
can be viewed (within a very good approximation) 
as one-dimensional modulations of orthorhombic 
basic structures having the same undistorted space- 
group symmetry Pcmn as phase I. 

All the structural information available at present 
is compatible with a single superspace-group 
assignment 

Pcmn(OO3")(lsi) = No 62.c.9.4 (1) 

characteristic for most of the incommensurate phases 
of compounds isostructural with K 2 S O  4. The meaning 
of the superspace-group symbol will become clear 
below; the fight-hand number is that adopted in a 
full classification list of (3 + 1)-dimensional super- 
space groups by de Wolff, Janssen & Janner (1981). 
Note that such a unique assignment is not in conflict 
with the change in space-group symmetry for these 
six phases. On the contrary, it supports the assign- 
ments made on the basis of diffraction data [not yet 
supported by detailed structure determinations] 
(Tanisaki & Mashiyama, 1980). 

This result also fits with a more general analysis 
performed by Hogervorst (1985) on a large number 
of fl-K2SO4-type crystal structures. He discusses the 
relevance of this same superspace group for most of 
the modulate phases of these compounds. Analogous 
ideas, but now formulated in terms of representations 
of the space group Pcmn and within the framework 
of Landau's theory for second-order phase transi- 
tions, have been expressed by Plesko, Kind & Arend 
(1980) and by Muralt, Arend, Altermatt & Chapuis 
(1984). 

In this work we will first give a superspace analysis 
of the TMA-ZC structure. Then the classical 
geometrical morphological laws and their physical 
meaning are briefly discussed before extending them 
to include the superspace description of modulated 
crystals. These new laws and the proposed superspace 
group will then be tested on the morphology of TMA- 
ZC. 

The main result of our morphological study of 
phases I to IV of TMA-ZC by growth sphere experi- 
ments reveals that the space group Pcmn of the 
average structure is reflected in the so-called main 
faces that are practically unaffected by the phase 
transitions. Only the so-called satellite faces are 
dependent on the crystal phase. Their position is 
directly related to the wave vector q and their appear- 
ance allows a superspace-group determination as dis- 
cussed below. In addition, also from a morphological 
point of view, all the four investigated phases appear 
to share the same crystallographic symmetry in four 
dimensions indicated above. 

2. The superspace description 

The superspace is, in general, a (3+ d)-dimensional 
Euclidean space, which has been introduced to 
recover the crystallographic symmetry of incom- 
mensurate modulated crystal phases. It is, however, 
a useful concept even if the modulation is com- 
mensurate and gives rise to a superstructure. To eluci- 
date this, a few key concepts appearing in the super- 
space approach have to be presented and applied to 
TMA-ZC, the reader being referred to other papers 
for more details (Janner & Janssen, 1980; Janner, 
1983). 

As already said, Fourier wave vectors of TMA-ZC 
can be labelled by four integers (indices) h, k, l and 
m ;  

k = ha* + kb* + lc* + mq ~ M* (2) 

with a*, b*, c* orthorhombic and q = 3'c*. 
In the para phase (I), 3' = 0, thus rn = 0 and the 

indices {hklO}={hkl} describe the normal Bragg 
reflections (and the normal crystal growth faces 
denoted as main faces) submitted to the systematic 
extinction rules one finds in International Tables for 
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Crystallography (1983). For the space group Pcmn, 
the conditions for reflection are: 

hkl: no conditions; hkO: h+ k even; Okl: l even. 

(3) 

The atomic equivalent positions at x, y, z with 

x = r a * ,  y = r b *  and z = r e *  (4) 

are defined modulo integers nl, n2, n3 as a con- 
sequence of the orthorhombic lattice translational 
symmetry n = n l a+  n2b+ n3e of the structure (a*, b*, 
e* span A* and are reciprocal to a, b, e). Accordingly, 
as is well known, in the Fourier phase factor 
exp (2~rikr) the scalar product kr is expressible as an 
integral linear combination of these unit-cell coordin- 
ates x, y, z. 

2.1. The incommensurate phase 

In the incommensurate phase (II), y - 0 . 4 2  is con- 
sidered irrational and thus q incommensurate with 
respect to A*. Looking at (2), one sees that in order 
to keep the same property as above for the scalar 
product kr one needs four coordinates: 

x = r a * ,  y = r b * ,  z = r e *  and t = r q  (5) 

now defined four modulo integers n~ to n 4. The addi- 
tional coordinate t is of course not independent of 
x, y, z, but can be made so by considering the family 
of structures one gets through shift of the phase of 
the modulation wave, and representing the whole by 
plotting the t coordinate along a fourth axis d perpen- 
dicular to a, b, e (and thus to a*, b*, e*). It is con- 
venient to choose Idl-- the modulation wavelength 
(Fig. l a ) .  All the various three-dimensional modu- 
lated crystals then appear as sections for constant t 
of that pattern, which is called a superspace embedding 
of the modulated crystal. Note that as a result of such 
an embedding a four-dimensional lattice translational 
symmetry is obtained and a four-dimensional space- 
group symmetry is then the result. 

In the present context it is convenient to take as a 
basis in the four-dimensional space the orthorhombic 
basis set spanned by a, b, e, d even though it is not 
a basis for the four-dimensional lattice of symmetry 
translations in superspace. These lattice translations 
can be expressed in terms of the following set of 
equilvalent positions: 

(x',y',z', t')=(x+nl, y+n2, z+n3, t-yn3+n4) (6) 

for any integer nl, hE, n3, n4. For M* as in (2) a 
projection of a four-dimensional reciprocal lattice Z* 
spanned by a*, b*, e* and d * = q - l - d / A  2, the above 
coordinates are the components of vectors ns of the 
corresponding direct lattice Z (with origin at x, y, z, 
t). 

In addition, one has the following set of equivalent 
positions associated with the point-group generators 

of the superspace group indicated in (1), the origin 
being at the inversion centre. 

g's= (1, 1): x,y,z , t  

g2s = (c, 1)x: ½-x,y, ½+z,t-½7 
g3=(m,s)y: 

g4=(n'iS)z: (7) 

gSs= (i ,  i)" 

g6 = (21, i)x: 

g] = (2,, is)y:  

g~ = (21, S)z: 

For y irrational any t = constant section describes 
with arbitrary precision the same crystal structure in 
space, because the set of phases of the modulation 
wave occurring for a given atom in the undistorted 
structure is dense in the interval 0 to 2rr. 

x, ½-y,z,t+½ 

½+ x, ½+ Y, ½- z, -t-½3/+½ 

- x ,  - y ,  - z ,  - t 

-x, ½+y,-z,-t+½ 

1 ½-Y, ½+z,t-½Y+½. - -  X, 

2.2. The commensurate phases 

In a good approximation all the phases II to VI 
have the same superspace-group symmetry given 

internal space 

? , 

~.z J~k.. I positional 
I ~ (  i . / ~  space 

(a) 
internal space 

( 

..- r... positional 
, F C- ..... ~,.-" ~ .  space 

,r'" "s "~, . ..."'~ 
(a) 

Fig. 1. (a) Supercrysta] plot in the point-atom approximation for 
the incommensurate  case. Each section perpendicular  to the 
internal direction gives the same modulated structure, only 
differing in a choice of origin. The ampli tude of the modulat ion 
wave is strongly exaggerated. (b) Corresponding supercrystal 
plot in the commensurate  case (3' = 1/6). Only sections at t = 0, 
+1/6,  : t :2/6, . . .  give modulated crystals with Pl121/n space- 
group symmetry. 
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Table2. Conditions for superspace-group elements to induce 3D Euclidean symmetry in a given section 
t = constant, as a function of  t and of  the modulation wavelength A = c~ y 

The integers m and n express translational symmetry, whereas the relative prime integers r and s occur in the commensurate modulated 
case only. 

Conditions for 3D Euclidean symmetry 
(c, 1)~ (m, s)r (21, s)= 

],= r/s 2n/(1 +2m) (1 + 2n)/2m (1 + 2n)/(1 +2m) 

(n, is)= (i, i) (2t, i)~ (21, is)y 
t'= t (1 + 2 n ) / 4 -  (1 + 2m)y/4 n/2 - my/2 n / 2 -  (1 + 2m)y/4 (1 + 2 n ) / 4 -  my/2 

above and can thus also be described in terms of the 
equivalent positions of (7). 

The commensurability is expressed by the con- 
dition 

y = r / s ~ Q ,  (8) 

with r, s relatively prime integers. For phases III and 
VI one has 3' = ½ and for phase IV 3' = 2. The three- 
dimensional Euclidean symmetry of the crystal struc- 
ture (which is now a 3D space group) depends on r, 
s and the t value of the section t = constant. The 
condition for an element gs of the superspace group 
Gs to induce a three-dimensional Euclidean sym- 
metry in space is to leave such a section invariant. 

Let us now discuss those conditions on r, s and t 
for the generators of the superspace group of TMA- 
ZC indicated in (7), each combined with the four- 
dimensional lattice translations of (6). 

Consider first g2= (c, 1)x. Combined with a lattice 
translation ns it transforms the position x, y, z, t to 

(x', y', z', t') 

= ( ½ - x +  n , , y +  n2,½+ z+ n3, t - ½ y - n 3 y +  n4). (9) 

Accordingly the condition t = t' requires 

y =  r /s  = 2n4/(1 + 2n3), (10) 

implying that (C)x is a symmetry element compatible 
with a modulated structure having 3' = ~ but not with 
one having y = ~. 

In the same way, and now considering g3 = (m, s)y, 
one finds that t = t' implies 

y =  r / s  = (1 + 2n4)/2n3, (11) 

so that my cannot be a symmetry element for a modu- 
2 lated structure with y = ~ or for one having y = ~. 

The situation is different for the generator gs 4= 
(n, lS)z, again combined with lattice translations. The 
condition t = t' now yields 

- (1  + 2n3)r + (2n4+ 1)s = 4st. (12) 

For any integers r, s there is a solution (rational 3' 
does not lead to restrictions) but only for discrete 
values of t. This simply reflects the fact that in a given 
(commensurate) modulated structure (superstruc- 
ture) only a finite number of different phases of the 
modulation wave occur: which one occurs depends 
on the structure and on its space-group symmetry. 
Equation (12) implies, in particular, that in order to 

1 1 have n~ = {mz]~, ~, ½} as a symmetry element for the 
t = constant section the following conditions have to 
be satisfied: 

f o r y = ~ :  t = v / 6 ,  
(13) 

f o r y = 2 :  t = ( 2 ~ + 1 ) / 2 0 ,  

for u any integer (Fig. l b). 
This analysis can be completed by considering all 

other generators of the superspace group given in (7). 
The resulting conditions for the generators of Pcmn 
to be symmetry elements for the various modulated 
phases are indicated in Table 2 (see also Janssen, 
1985). One sees, as already recognized in previous 
publications by other authors (Tanisaki & Mashi- 
yama, 1980; Plesko, Kind & Arend, 1980; Muralt, 
Arend, Altermatt & Chapuis, 1984; Iizumi, Axe & 
Shirane, 1977), that the following space groups can 
occur for the q vectors involved: 

P2,212, Pc2,n P(2 , /n )z  
(14) 

P(2, /c)x  Pcx and P(2,)z, 

lower symmetries being of course possible but not 
expected. 

The space groups assigned to phases III to VI by 
Tanisaki & Mashiyama (1980) are in full agreement 
with the present analysis. The corresponding values 
for y and for equivalent sections at t are summarized 
in Table 3. In particular, for phase V the unusual 
value for the modulation y -- 2 is the smallest one for 
compatibility between the assigned space group and 
the common superspace group. 

Note, however, that the non-orthorhombic phases 
still have (in the present approximation) a (pseudo-)- 
orthorhombic lattice. The label pseudo indicates that 
the lattice symmetry is higher than that required by 
the (three-dimensional) space xgroup. That lattice 
symmetry is, however, imposed by the superspace 
group. 

The small deviations of/3 and a from 90 ° in phases 
IV and V, respectively, must be seen as symmetry 
breaking. The same possibly applies to the small 
ferroelectric effect observed in phase III. The 3D 
space-group assignment Pc21n for this phase allows, 
in itself, ferroelectricity, i.e. a non-zero total electric 
moment within the fivefold supercell (with respect to 
the paraelectric phase I). The proposed superspace- 
group symmetry, however, implies in the incom- 
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Table 3. Compatibility relations between 3 D space-group and superspace-group symmetry in the commensurately 
modulated cases 

The  space groups  indicated are Eucl idean symmetry  groups for  each o f  the sections t = constant  indicated,  whereas  the superspace  
group  leaves the set o f  equivalent  sections labelled by an integer u invariant.  

Space-group compatibi l i ty  with Pcmn(OOy)( ls[)  

Phases VI V IV III II I 
Space group P212121 P21/C 11 PI 12t/n Pc21 n Incommensurate Pcmn 

3' 1/3 2 1/3 2/5 Irrational 0 
t (1 + 2 u)/12 v~ 2 v/6 (1 + 2 v)/20 Dense Arbitrary 

mensurate case a zero ferroelectric effect. For the 
commensurate case one needs more structural details 
in order to draw the same conclusion. 

The high-temperature hexagonal K 2 S O  4 structure 
lies beyond this discussion, as it is a disordered type 
Pcmn structure (Unruh, 1981). 

2.3. Extinction rules 

The property that all phases I to VI of TMA-ZC 
share the same superspace-group symmetry implies 
the same conditions for occurrence of Fourier com- 
ponents, once a common four-indices labelling 
(h, k, l, m) as in (2) has been adopted. Then the group 
Pcmn(OOy)(lsl) leads to the following conditions for 
reflection (de Wolff, Janssen & Janner, 1981): 

hklm: no conditions; hk00: h + k even; 
(15) 

hOlm: m even; Oklm: I even. 

The extinction rules for the space groups of the com- 
mensurate phases are normally expressed in terms of 
three indices (called here HKL), which refer to 
different bases, but have to be compatible with the 
above one as these space groups are subgroups of the 
same superspace group. For y = r~ s with r, s relatively 
prime integers the reciprocal-lattice vectors k can be 
written as 

k =  H A * +  K B * +  LC* (16) 

with A*= a*, B*= b* and C * =  c*/s. Accordingly 
we simply have 

( h , k , l , m ) = ( h , k ,  s l + r m ) = ( H , K , L )  (17) 

and one easily verifies that indeed the extinction rules 
for the various space groups given in (14) are compat- 
ible with (15). 

Most remarkable is the fact that none of these space 
groups imply conditions for HOL reflections. The 
hOlm, m = 2n condition thus seems typical for the 
superspace group. 

3. Modulated structures and morphology 

3.1. Classical geometrical laws and their physical 
interpretation 

According to the classical morphological laws of 
Bravais, Friedel, Donnay and Harker (BFDH), the 

larger the distance between equivalent lattice planes 
{hkl}, the larger the morphological importance (MI) 
of the crystal face parallel to these planes; this implies 
that h, k and I are small integers. It follows that {hkl} 
faces related through point-group symmetry will all 
have the same MI. The non-primitive translational 
components of the space group manifest themselves 
by bisecting, trisecting etc. the distance between 
equivalent lattice planes, thus reducing the MI of 
such orientations. Evidently, both the definition of a 
three-dimensional (3D) space group and the applica- 
bility of the BFDH laws depend on the existence of 
lattice translational symmetry. In fact, lattice transla- 
tional symmetry was derived from crystal morphology 
as it is implicit in the law of rational indices of Hauy 
(Friedel, 1911). 

Thermodynamically, the equilibrium form of a 
crystal is determined by the minimalization of the 
surface free energy (Herring, 1951). Flat crystal faces 
of finite size can develop along planes that have a 
minimal edge free energy larger than zero. This energy 
3/ generally decreases with increasing temperature 
and vanishes at the roughening temperature TR{hkl} 
(van der Eerden, Bennema & Cherepanova, 1978). 
Abstracting from the crystal growth parameters, one 
may say that in general MI{hkl} increases with 
increasing 3' and hence with increasing ( TR{hkl} - T). 

Structurally, a non-zero, edge free energy is 
obtained when a 2D network of strong bonds can be 
constructed within the {hkl} slice. The roughening 
temperature of such a bond network has been shown 
to be dependent on the strength and the geometry of 
the bond structure (Rijpkema, Knops, Bennema & 
van der Eerden, 1982). It must be noted that the 
distance between equivalent (or almost equivalent) 
bond structures is sometimes smaller than that of the 
equivalent lattice planes. Correspondingly, the M I of 
such orientations is lower than expected on the basis 
of BFDH [see Donnay & Donnay (1961) or Hartman 
(1968)]. 

In summary, it appears that the success of the 
geometrical laws of Bravais, Friedel, Donnay and 
Harker originates from a correspondence between the 
distance d{hkl} and the strength of the 2D bond 
structure contained in the corresponding {hkl} slice. 
In other words, the Fourier transform of electron 
densities usually resembles that of the bond densi- 
ties. 
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3.2. Extended morphological laws and their physical 
interpretation 

A direct generalization of the classical geometrical 
laws is possible if one considers crystal faces (and 
crystal planes) as wave fronts of Fourier density 
waves. For both commensurate and incommensurate 
modulations the BFDH laws then have to be applied 
to wave vectors k = ha* + kb* + le* + mq lying normal 
to crystal faces {hklm}. Corresponding to the classical 
case we assume that the MI of such a face will increase 
with increasing d{hklm} the distance between neigh- 
bouring wave fronts, assuming h, k, l and m to be 
small integers. Furthermore, superspace symmetry 
relating k and k' will result in the relation M I ( k ) =  
MI(k') ,  whereas systematic extinctions of the super- 
space group for k" will make MI(k")=  0. 

Note that k is defined in 3D space. Therefore, the 
condition h, k, I and m small does not follow directly 
from the requirement that d{hklm} has to be large, 
but it is required for the corresponding lattice hyper- 
planes in 4D space. 

Indeed, the vector k is the projection of a 
reciprocal-lattice vector ks, which is a Fourier wave 
vector of the crystal embedded in superspace. As the 
latter does have lattice periodicity, an extension of 
the classical morphological laws to superspace is 
expected to be in complete analogy with the 3 D case. 
However, at present, the absence of a description of 
the bond structure in superspace prevents this. Hence 
a physical interpretation of these extended laws when 
applied to a modulated 3D crystal as a cross section 
of the 4D supercrystal is not yet possible. 

Anyhow, a fruitful approach to this problem is to 
distinguish between main {hklO} and satellite {hklm} 
faces, though now defined in 3D space, just as one 
does for the diffraction pattern in terms of main and 
satellite reflections. Lattice planes are discussed for 
the commensurate modulation case (superstructure) 
while treating incommensurability as a limiting case. 
At phase transitions characterized by a change of q 
it is evident that d{hklm} changes only when m # 0. 
Indeed, it is easily seen that some orientations of 
superstructures have this property (Fig. 2). For 
example, in s-fold superstructures along c, {h'k'l'} s 
faces, where h', k' and l' are the indices of the s-fold 
superstructure, can be identified as main {hklO} faces 

" " " ® " ; ~ t d{loo} ~--. d { 100 }3-- d { 'lO00} 

% c 

Fig. 2. The changes occurring in lattice planes after a modula t ion  
triples the c axis. 

Table4. Comparitive morphology of [(CH3)4N]2- 
ZnC14, a s  far as main faces are concerned 

For commensura te  superstructures the present faces are described 
in the classical three-index notat ion { HKL}. For the incommensur-  
ate case the use of  the four-index notat ion with a*, b*, c* and q 
as basis vectors is inevitable. This notat ion can in fact be used to 
describe the morphology in all phases (column 1). 

The main faces of  [(CH3)4N]2ZnCI 4 

Phases IV III II I 
{hklm} q = 1/3c* q = 2/5c* q = 0.42c* Para 
{2000} {200} {200} {2000} {200} 
{2010} {203} {205} {2010} {201} 
{lOlO} {103} {105} {1010} {101} 
{1020} {106} {1,0,10} {1020} {102} 
{0020} {006} {0,0,I0} {0020} {002} 

{1100} {110} {110} {1100} {110} 
{1110} {113} {115} {1110} {111} 

{0200} {020} {020} {0200} {020} 
{0120} {016} {0,1,10} {0120} {012} 

if 1'= zs (z integer and h, k, ! indices of the basic 
structure). The action of a modulation wave q = yc* 
upon these orientations will only affect the periodicity 
of the 2D bond structure parallel to this orientation; 
i.e. the {hklO} bond structure unit is made up from 
modulated {hkl} units. The distance between the lat- 
tice planes is left unperturbed. As long as the struc- 
tural changes involved by the modulation wave are 
small, its effect on the MI of {hklO} planes will be 
small; i.e. M l {hk l } -  Ml{hklO}. 

On the other hand, a satellite slice {hklm} of a 
crystal in its modulated phase will contain 's '  (if 
y = r / s )  lattice planes, which have become 
inequivalent through the action of the modulation. 
Clearly, the increased distance between equivalent 
lattice planes opens the possibility for the formation 
of new bond structures and hence an enhancing of 
the MI of these orientations. On the other hand, it 
may happen that in each of these lattice planes a 
stable 2D bond structure is already present. Then, 
one has the case described by Donnay & Donnay 
(1961), which shows the difference between the crystal 
described in terms of bonds or in terms of electron 
densities. The MI of such an orientation will only 
slightly change when going into that modulated 
phase; the strongest of the 's '  inequivalent bond struc- 
tures present will determine the MI. The existence of 
pseudo-translations cannot be determined from the 
geometry of the diffraction pattern only, as it is typi- 
cally a property of the bond structure. Because these 
faces behave like main faces it will be better to 
describe them as main/satellite faces. This hybrid 
characterization of some of the faces of a modulated 
crystal is also justified from the purely geometrical 
point of view of the crystal form in superspace, for 
those 2D intersections between satellite and main 3D 
faces of the supercrystal that lie in the physical space 
(Janner, 1983). 
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In the case of an incommensurate modulation an 
{hklm} slice contains an infinite number of now 
inequivalent lattice planes. The reticular density of 
lattice points of each of these planes is, however, 
zero. This shows that for a modulated incommensur- 
ate 3D crystal one can only speak in a formal sense 
of d { hklm } as the distance between equivalent lattice 
planes. Hence, we will call d{hklm} the thickness of 
a crystal slice, i.e. the distance between planes of 
constant phase. 

The need for the distinction between main and 
satellite faces will be illustrated by the description of 
the morphology of TMA-ZC. This will give us also 
some clues to the more detailed structural aspects of 
satellite faces. 

4. The phase-dependent morphology of 
[ ( C H 3 ) 4 N ] 2 Z n C I 4  

4.1. Sphere experiments on crystal form and crystal 
symmetry 

Single crystals of TMA-ZC were grown at 303 K 
from acidified aqueous solutions of [ ( C H 3 ) 4 N ] C I  and 
ZnC12 in a 2 : 1 molar ratio. Clear transparent crystals 
were obtained that did not show any aging effects. 
After grinding and polishing them into spheres, the 
crystals were grown for about one day in slightly 
supersaturated solutions at temperatures between 298 
and 274 K. 

Their morphology, as measured by goniometry (at 
room temperature), can be indexed very easily using 
{hklm} indices, taking the room-temperature lattice 
parameters a=15.541,  b=8.998 and c = 1 2 . 2 7 6 ~  
(Wiesner, Srivastava, Kennard, DiVaira & Lingafel- 
ter, 1967) as a basis, while q changes from phase to 
phase. Thus, the law of rational indices applied to 
e.g. {hOlm} faces retricts the angle ~0 between [001] 
and [h0l] to possible ratios: 

tan ~ = ha*/(l+ my)c*. (18) 

In Table 4 the presence of main {hklO} faces is 
indicated for the various phases. The classification of 
{0020} as a main face might seem a bit ambiguous, 
as it can be seen as a {0001} satellite face as well. 
Geometrically it is an example of those main/satellite 
faces discussed above. From the point of view of 
bond structure, it is seen that all slices are equivalent, 
if one views the modulation wave as a homogeneous 
plane wave polarized along b. On the other hand, the 
presence of this orientation in the para phase shows 
its main-face character. 

Clearly, the appearance of the main faces is not 
affected by the phase transitions. Throughout the 
whole temperature range considered here, the 
configurational point-group symmetry of these faces 
remains mmm. Deviations from orthorhombicity 
could not be observed. The {hklm} indexing shows 
its convenience by the fact that it can be used not 

Table 5. The satellite morphology of 
[ ( C H 3 ) 4 N ] 2 Z n f l 4  

The comprehensive notation of column 1 is valid for all phases 
again. The presence of a particular satellite is indicated by giving 
its three- or four-index symbol in the column of the phase in 
question. 

Satellite faces of TMA-ZC 

Phases I V I I I I I I 
{hklm} q = 1/3c* q = 2/5c* q =0.42c* para 
{1012} {101} {101} {1012} -- 
{1oo2} {lO2} -- -- -- 
{1101} {111} {112} {1101} --  
{ l l l i }  {112} {113} {1111} --  

{0101} {011} {012} {0101} - -  
{0102} {012} --  -- --  

only in the incommensurate phase, where it is the 
only possible notation in terms of integers, but 
describes the morphology in the other modulated 
phases as well. Moreover, one and the same {hklO} 
symbol can be used to describe the main faces 
observed so far in any of the modulated phases, using 
only the integers 0, 1 and 2. 

A similar simplicity is seen in the description of 
the satellite faces given in Table 5. Again, the 
configurational symmetry observed was mmm (Fig. 
3), which indicates that the external (or three- 
dimensional) part of the four-dimensional point 
group is mmm, despite the fact that the point group 
of phase IV is 2/m. Now, for the same reasons as in 
the ditiraction pattern satellite faces {hklm} change 
in orientation with respect to the main faces at each 
change of q. In Fig. 4 the morphologically derived 
changes in ~ [where q = (1/3 + 8)c*] have been plot- 
ted as a function of temperature. Each point rep- 
resents the average ~ value for a specific crystal as 
computed from the positions of all satellite faces 
found on that crystal. Owing to surface roughness 
the spread in 8 is crystal dependent and varies 
between +0.005 and +0.01. Qualitatively, the figure 
compares well with that based on diffraction data as 
given by Almairac, Ribet, Ribet & Bziouet (1980) and 

1100 1101 

~ I 0  :I~I0 h 
Ioool OOOl I [oolo [~ ~- OOlOj 
" ~ 1 ] 0  a'÷O" 1 ~ /  

" ~ ~  110]" 1100  1 1 0 1 ~  " /  

Fig. 3. Faces normal to wave vectors k = ha* + kb* + lc* + mq pres- 
ent in the [110] zone when q = 1/3c*. A change in the modulation 
vector q results in a change of the orientation of the satellite 
faces only. The morphological importance of satellites is exag- 
gerated in this figure. 
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Marion, Almairac, Lefebvre & Ribet (1981). Also 
in their measurements the incommensurate- 
commensurate phase transition appears to be rather 
smooth. The transition temperature deviates some- 
what though, but this sample dependence is not 
abnormal. 

Generally, apart from the value of the index m, 
satellite faces can be distinguished from main faces 
by the fact that the intensity of reflected light observed 
at the goniometer is rather weak. Only on crystals 
grown in phase IV were satellite faces observed as 
macroscopically visible facets, whereas, especially in 
the incommensurate phase, satellite faces are very 
difficult to observe. This indicates a relationship 
between MI and the modulation amplitude: generally 
it is observed that the amplitude of the modulation 
wave increases at lower temperatures (Hogervorst, 
1983). In Table 6 the relative MI (crudely indicated 
by + and + + )  of main and satellite faces of the 
[010] zone in phase III is compared with their 
d{hklm}. Evidently, the MI of satellite faces is less 
than what one would expect on the basis of their 
d{hklm}, which again stresses the importance of dis- 
tinguishing between main and satellite faces. 

In the commensurate case the way in which main 
and satellite faces are indexed is of course not unique. 
In each case our first purpose has been to keep the 
h, k, I indices as low as possible. Even then, in phase 
IV the {1002} can be indexed as {101i} as well (the 
same for {1012} and {1001}). This ambiguity is not 
present in the description of phase III. Hence, in a 
unified description of the satellite morphology, we 
prefer {1002} and {1019-}. Above all they beautifully 
demonstrate the {hOlm} condition typical for the pro- 
posed superspace group. Also, all other observed 
main and satellite faces are compatible with 
Pcmn(OO3,)(lsl) as symmetry group. 

From this description of the morphology of 
TMA-ZC we learn that it depends on the modulation 
vector. The positions of satellite faces are coupled to 
the modulation vector and extinction conditions seem 
to govern their appearance. The configurational 
point-group symmetry mmm of both main and satel- 
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Fig. 4. Morphologica l ly  moni to red  evolut ion o f  the incom- 
mensurabi l i ty  8, where q = ( 1 / 3 + 8 ) ,  as a funct ion o f  tem- 
perature.  Ins t rumental  er ror  in 8 is given by the spot size. Error  
bars indicate the spread due  to surface inhomogenei t ies .  

Table 6. The relative MI of main and satellite faces in 
the [010] zone, as observed in phase III 

The faces are listed according to their  d{hklm}. MI = + means  
that  the facet  is only visible as a reflection at the goniometer ,  
whereas if MI = + + the facet is grown out as a macroscopica l ly  

visible facet. 

{hkl} d{hkl} MI {hklm} 
{100} 15.5 + + {1000} 
{101} 14.3 + {1012} 
{102} 11-9 + {1002} 
{103} 9-6 + + {1010} 
{203} 6.6 + + {2010} 
{106} 5.7 + {1020} 

lite faces of TMA-ZC appears to be determined by 
the 3D component of the superspace point group. 

4.2. The microscopic structure of the satellite faces 

It appeared to be relevant to distinguish between 
satellite and main faces. The main faces can be treated 
as being independent of the modulation wave and 
behave according to the classical morphological laws. 
The satellite faces are strongly related to the modula- 
tion wave. Especially as their position seems to vary 
continuously with q, their microscopic structure is far 
from evident. Also with respect to d{hklm}, main and 
satellite faces cannot be treated on the same level. 
On the other hand, the satellite face morphology is 
not completely independent of the habit of main 
faces. Satellite faces are only found in zones defined 
by a strong F face and the q direction of the modula- 
tion. The relation with the main faces is even such 
that, for each {hklm}, {hklO} is present as a main F 
face (disregarding for the moment possible slice halv- 
ing of{hklO} due to the external part of the superspace 
group). 

As the structural changes at the phase transitions 
are very small, the formation of new bonds is unlikely. 
However, there is a change in periodicity and the 
newly formed {hklO} faces consist of modulated bond 
structures {hkl}. As a structural model for the satellite 
faces one could then think of an { hklm } face as being 
constructed from monolayer stepped {hklO} faces. 
Normally stepped interfaces are not stable. Only some 
coupling between (the phase of) the modulation wave 
and the step structure could result in an energetically 
stable orientation. Further stabilization would be 
achieved when the steps repel each other (Landau, 
1965). 

If the stability of step positions depends only on 
the relative phase of the modulation wave, macro- 
scopic step structures will be most stable when the 
steps form equi-phase lines. Hence {hklm} and {hklO} 
have to be situated in a zone whose axis is normal to 
q. 

Indeed, for TMA-ZC with q =  3,c* and 3'= r/s, 
satellite faces are found in the [110], [100] and [010] 
zones. In every zone each {hklm} can be built up from 
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[mlr steps per s {hkl} bond structures. The m = 2  
condition in zone [010] can now be understood from 
the geometry of the modulation wave with respect to 
the step structures in this zone. The ( ~ ) = ( m ,  s)y 
superspace-group symmetry element implies that the 
modulation wave remains invariant after reflection in 
a mirror normal to b and a shift by 7r of the modula- 
tion wave. Hence, step structures will be most stable 
if they are invariant under the same operation and 
there will be at least two stable step positions per 
modulation period. 

Though the stepped surface hypothesis explains 
some of the morphological features of TMA-ZC, it 
is clear that it is still a rather phenomenological 
description of the satellite faces. It would be interest- 
ing to see whether this description is compatible with 
the 4D electron density distributions of TMA-ZC. 

Recently, in situ microscopy on TMA-ZC and 
K2ZnCI4  (a  f l -K2SO4 modulated structure with q =  
1/3c*) has been started, using oblique illumination 
as described earlier (Dam, Polman & van Enckevort, 
1984). The first results showed no difference between 
the surface morphology of main 'and satellite faces. 
In both cases circular steps around growth centres 
were observed. To gain more insight into the binding 
properties of modulated crystals a more detailed sur- 
face characterization is needed. A superspace embed- 
ding of the bond structure, analogous to that of the 
electron density, could help to recognize the relevant 
features, but such work has still to be done. 

The present derivation of the space-group sym- 
metry of sections of the crystal embedded in super- 
space follows a suggestion by T. Janssen, whose con- 
tribution is gratefully acknowledged. Further, we are 
indebted to J. W. van Kessel for technical assistance. 
Thanks are also due to the Stichting ZWO/SON and 
the Stichting FOM for partial support of the present 
investigation. 
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